Arginase 1 regulation of nitric oxide production is key to survival of trophic factor-deprived motor neurons.
نویسندگان
چکیده
When deprived of trophic factors, the majority of cultured motor neurons undergo nitric oxide-dependent apoptosis. However, for reasons that have remained unclear, 30-50% of the motor neurons survive for several days without trophic factors. Here we hypothesize that the resistance of this motor neuron subpopulation to trophic factor deprivation can be attributed to diminished nitric oxide production resulting from the activity of the arginine-degrading enzyme arginase. When incubated with nor-N(G)-hydroxy-nor-L-arginine (NOHA), the normally resistant trophic factor-deprived motor neurons showed a drop in survival rates, whereas trophic factor-treated neurons did not. NOHA-induced motor neuron death was inhibited by blocking nitric oxide synthesis and the scavenging of superoxide and peroxynitrite, suggesting that peroxynitrite mediates NOHA toxicity. When we transfected arginase 1 into motor neurons to see whether it alone could abrogate trophic factor deprivation-induced death, we found that its forced expression did indeed do so. The protection afforded by arginase 1 expression is reversed when cells are incubated with NOHA or with low concentrations of nitric oxide. These results reveal that arginase acts as a central regulator of trophic factor-deprived motor neuron survival by suppressing nitric oxide production and the consequent peroxynitrite toxicity. They also suggest that the resistance of motor neuron subpopulations to trophic factor deprivation may result from increased arginase activity.
منابع مشابه
Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation.
Primary cultures of rat embryonic motor neurons deprived of brain-derived neurotrophic factor (BDNF) induce neuronal nitric oxide synthase (NOS) within 18 hr. Subsequently, >60% of the neurons undergo apoptosis between 18 and 24 hr after plating. Nitro-L-arginine and nitro-L-arginine methyl ester (L-NAME) prevented motor neuron death induced by trophic factor deprivation. Exogenous generation o...
متن کاملNitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor.
Trophic factor deprivation induces neuronal nitric oxide synthase (NOS) and apoptosis of rat embryonic motor neurons in culture. We report here that motor neurons constitutively express endothelial NOS that helps support the survival of motor neurons cultured with brain-derived neurotrophic factor (BDNF) by activating the nitric oxide-dependent soluble guanylate cyclase. Exposure of BDNF-treate...
متن کاملArginase Activity and Its Effects on Pathogenesis of Leishmania
Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...
متن کاملEffect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages
Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...
متن کاملNitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism.
We have used cultured PC12 cells and rat sympathetic neurons as model systems to examine the regulation of neuronal cell death and survival. Because nitric oxide (NO) may be involved in nerve growth factor (NGF) signaling in PC12 cells, we tested NO-generating compounds for their ability to protect PC12 cells and sympathetic neurons from death after withdrawal of trophic support. Three such age...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 33 شماره
صفحات -
تاریخ انتشار 2006